- 關(guān)于我們
- 針對(duì)假冒留學(xué)監(jiān)理網(wǎng)的聲明
- 留學(xué)熱線:4000-315-285
留學(xué)中介口碑查詢
開(kāi)始日期:
2023年6月24日
專業(yè)方向:
計(jì)算機(jī)與人工智能
導(dǎo)師:
Soummya(卡內(nèi)基梅隆大學(xué) (CMU) 終身正教授)
課程周期:
7周在線小組科研學(xué)習(xí)+5周不限時(shí)論文指導(dǎo)學(xué)習(xí)
語(yǔ)言:
英文
建議學(xué)生年級(jí):
大學(xué)生
項(xiàng)目產(chǎn)出:
7周在線小組科研學(xué)習(xí)+5周不限時(shí)論文指導(dǎo)學(xué)習(xí) 共125課時(shí) 項(xiàng)目報(bào)告 優(yōu)秀學(xué)員獲主導(dǎo)師Reference Letter EI/CPCI/Scopus/ProQuest/Crossref/EBSCO或同等級(jí)別索引國(guó)際會(huì)議全文投遞與發(fā)表指導(dǎo)(可用于申請(qǐng)) 結(jié)業(yè)證書(shū) 成績(jī)單
項(xiàng)目介紹:
課題面向?qū)τ?jì)算機(jī)、機(jī)器學(xué)習(xí)、人工智能領(lǐng)域感興趣的高中生和大學(xué)生,結(jié)合學(xué)生校內(nèi)所學(xué)知識(shí)量身打造,將以獨(dú)立且完整的形式介紹聯(lián)合學(xué)習(xí)的基本內(nèi)容。在本課題中,教授會(huì)從聯(lián)合學(xué)習(xí)的基礎(chǔ)領(lǐng)域開(kāi)始講解,從監(jiān)督學(xué)習(xí)和訓(xùn)練模型優(yōu)化切入,并逐漸從集中式機(jī)器學(xué)習(xí)向分布式機(jī)器學(xué)習(xí)進(jìn)行過(guò)渡。課題將涵蓋聯(lián)合學(xué)習(xí)的基本架構(gòu)和算法,介紹對(duì)聯(lián)合學(xué)習(xí)算法進(jìn)行設(shè)計(jì)分析時(shí)所需的主要工具,講解現(xiàn)有的計(jì)算框架,并結(jié)合自動(dòng)駕駛等案例體現(xiàn)聯(lián)合學(xué)習(xí)的實(shí)戰(zhàn)應(yīng)用。針對(duì)未來(lái)有意從事人工智能、機(jī)器學(xué)習(xí)相關(guān)行業(yè)及科學(xué)研究的學(xué)生,本課題將提供必要準(zhǔn)備和堅(jiān)實(shí)基礎(chǔ)。The topic of decentralized machine learning and in particular federated learning is of immense practical and theoretical interest in the broad ML community. This course focuses on an overview of this emerging research area with a self-contained set of lectures focusing on key prerequisites such as supervised learning and optimization for model training. It introduces in a tutorial manner the transition to decentralized ML from centralized paradigms with illustrations and examples. The course is aimed at university students as well as high school students with an interest in computing and algorithms. Elementary matrix analysis and linear algebra are expected as prerequisites, however, the lectures will be self-contained to cater to a broad audience