您現(xiàn)在的位置:首頁 > 背景提升 > 人工智能 高性能計算專題: 分布式優(yōu)化算法在訓練以計算機視覺為例的深度學習神經網絡等系統(tǒng)中的應用研究【大學組】
驗證碼

獲取驗證碼

國外小組科研—人工智能 高性能計算專題: 分布式優(yōu)化算法在訓練以計算機視覺為例的深度學習神經網絡等系統(tǒng)中的應用研究【大學組】

開始日期:

2023年6月24日

專業(yè)方向:

計算機與人工智能

導師:

Soummya(卡內基梅隆大學 (CMU) 終身正教授)

課程周期:

7周在線小組科研學習+5周不限時論文指導學習

語言:

英文

建議學生年級:

大學生

項目產出:

7周在線小組科研學習+5周不限時論文指導學習 共125課時 項目報告 優(yōu)秀學員獲主導師Reference Letter EI/CPCI/Scopus/ProQuest/Crossref/EBSCO或同等級別索引國際會議全文投遞與發(fā)表指導(可用于申請) 結業(yè)證書 成績單

項目介紹:

課題面向對計算機、機器學習、人工智能領域感興趣的高中生和大學生,結合學生校內所學知識量身打造,將以獨立且完整的形式介紹聯(lián)合學習的基本內容。在本課題中,教授會從聯(lián)合學習的基礎領域開始講解,從監(jiān)督學習和訓練模型優(yōu)化切入,并逐漸從集中式機器學習向分布式機器學習進行過渡。課題將涵蓋聯(lián)合學習的基本架構和算法,介紹對聯(lián)合學習算法進行設計分析時所需的主要工具,講解現(xiàn)有的計算框架,并結合自動駕駛等案例體現(xiàn)聯(lián)合學習的實戰(zhàn)應用。針對未來有意從事人工智能、機器學習相關行業(yè)及科學研究的學生,本課題將提供必要準備和堅實基礎。The topic of decentralized machine learning and in particular federated learning is of immense practical and theoretical interest in the broad ML community. This course focuses on an overview of this emerging research area with a self-contained set of lectures focusing on key prerequisites such as supervised learning and optimization for model training. It introduces in a tutorial manner the transition to decentralized ML from centralized paradigms with illustrations and examples. The course is aimed at university students as well as high school students with an interest in computing and algorithms. Elementary matrix analysis and linear algebra are expected as prerequisites, however, the lectures will be self-contained to cater to a broad audience

更多課程分類
驗證碼

獲取驗證碼